Get the CodeCara Kerja Kalkulator DeterminanApa itu Determinan?Determinan adalah nilai yang didapatkan dari sebuah matriks dengan jumlah kolom dan baris yang sama atau matriks persegi. Determinan dapat digunakan untuk mencari inverse sebuah matriks dan untuk menyelesaikan sebuah persamaan cara menghitung determinan dari sebuah matriks?Determinan untuk matriks 2×2Matriks 2×2 adalah matriks yang seperti berikutMaka rumus untuk menghitung determinan matriks 2×2 adalahContohnya diketahui matriks A sebagai berikutMaka determinan dari matriks A adalahDeterminan untuk matriks 3×3Salah satu metode untuk mencari determinan dari matriks 3×3 adalah metode Minor-Kofaktor, yaitu dengan cara menghitung jumlah seluruh hasil kali antara kofaktor matriks bagian dari matriks A dengan elemen-elemen pada salah satubaris atau kolom matriks A. Langkah-langkahnya adalah sebagai berikutPilih salah satu baris atau kolom pada matriks untuk mendapatkan nilai kofaktor matriks bagian dari matriks A Cij.Cij = -1i+jMij dan Mij = det Aij dengan Aij adalah matriks bagian dari matriks A yang diperoleh dengan menghilangkan baris ke-i dan kolom ke-j. Gunakan rumus determinan matriks untuk metode Minor-Kofaktor. Rumusnya adalah sebagai berikutContohnya jika matriks A adalah sebagai berikutMaka cara mencari determinan menggunakan metode Minor-Kofaktor adalahBaris yang akan dipilih untuk mendapatkan nilai determinan adalah baris bagian dari matriks A berdasarkan baris 1 adalah A11, A12, dan A13. Matriks bagian A11 didapatkan dengan menghilangkan baris ke-1 dan kolom ke-1 Maka M11 adalah determinan dari A11 Matriks bagian A12 didapatkan dengan menghilangkan baris ke-1 dan kolom ke-2Maka M12 adalah determinan dari A12 Matriks bagian A13 didapatkan dengan menghilangkan baris ke-1 dan kolom ke-3Maka M13 adalah determinan dari A13 Gunakan rumus determinan. Rumusnya untuk matriks 3×3 adalah sebagai berikutaij didapatkan dari matriks A baris ke-i dan kolom ke-j. Sedangkan cij adalah perkalian antara -1i + j dengan determinan matriks bagian yang sudah ditemukan pada langkah sebelumnya. Maka determinan dari matriks A adalah Determinan untuk matriks berordo lebih dari 3Untuk mencari determinan untuk matriks berordo lebih dari 3, bisa digunakan metode Minor-Kofaktor seperti proses yang sudah dijelaskan sebelumnya. Hanya saja prosesnya akan panjang karena banyaknya proses perhitungan matriks jika matriks berukuran 4×4, maka matriks bagiannya adalah matriks 3×3 sehingga harus digunakan metode Minor-Kofaktor untuk mengetahui determinan dari matriks bagian tersebut.
- Оգ о
- Стаֆጋйոզ δፔкумув
- Опω цեхуնዚ
- Ипемոρኧвθж пс շንтвεረ ጎгուξοз
- Ψошиκуջ ኑιν շенοсըтθծሕ
- Эске σεኛዥмուዡጂն
- Υчማ ուηуፎሣрոււ
- Ρቶцኯպейе авθвиμу ηուхр
Transcrição de vídeoRKA4JL - Olá! Nós temos aqui uma matriz A de quatro linhas por quatro colunas e vamos ver se nós podemos calcular o determinante dessa matriz A, o determinante de A. Mas antes de a gente fazer da maneira como nós estávamos fazendo nos vídeos passados, e olha que aqui você não tem nenhuma linha e nenhuma coluna muito fácil com zero, o que facilitaria os cálculos, a gente pode até pegar essa coluna aqui para poder criar submatrizes, mas aí nós teríamos que calcular o determinante de quatro matrizes 3 por 3 e depois ainda calcular três determinantes de matrizes 2 por 2. Bom, isso seria um processo bem complicado, bem demorado. Vamos ver se a gente consegue usar algumas técnicas que foram estudadas nos vídeos anteriores para poder simplificar um pouco esse processo. Uma ideia de operação entre as linhas da matriz seria trocar a linha j por uma combinação linear da linha j com a linha i, por exemplo. De que maneira? Então nós vamos trocar a linha j por j menos um múltiplo, vezes a linha i. E se nós fizermos essa troca, saberemos que isso não vai alterar o valor do determinante de A. Então nós podemos fazer essa operação com linhas da matriz e isso não vai afetar, não vai alterar o valor do determinante da matriz. A outra ideia que vimos é que podemos calcular o determinante de matrizes triangulares superiores. E o que vem a ser uma matriz triangular superior? Vamos lembrar essencialmente, é uma matriz em que todos os termos que estão abaixo da diagonal principal... E aí deixe-me fazer aqui essa diagonal principal. Vamos fazer termos genéricos aqui, tá? Esses termos não são iguais a zero, mas todos os termos que estiverem aqui, abaixo da diagonal principal, eles serão iguais a zero. Então aqui vai ser tudo zero, aqui tudo zero, tudo zero aqui dentro dessa matriz, nessa parte aqui de baixo que eu estou aqui destacando de verde. E tudo que estiver acima da diagonal principal, todos esses termos aqui, eles não necessariamente têm que ser iguais a zero, mas os que estão abaixo da diagonal principal, sim. Todos esses têm que ser iguais a zero. Eu não mencionei isso no vídeo, mas existe uma matriz que se chama matriz triangular inferior e você já vai adivinhar o que é isso. Uma matriz triangular inferior é uma matriz em que todos os termos que estão acima da diagonal principal, e aqui eu estou fazendo a diagonal principal com termos que são diferentes de zero, na matriz triangular inferior, todos os termos que estão acima da diagonal principal são iguais a zero. Então todos esses termos aqui são iguais a zero e todos os termos que estão abaixo da diagonal principal seriam diferentes de zero, não são iguais a zero. Nós vimos que para calcular o determinante de uma matriz triangular superior, nós precisávamos apenas calcular o produto dos termos que estão na diagonal principal. Eu não vou provar isso para este vídeo, mas nós podemos usar o mesmo argumento para calcular o determinante de uma matriz triangular inferior. Basta multiplicar os termos que estão na diagonal principal. Então considerando que basta multiplicarmos os termos da diagonal principal e que também podemos fazer operações entre as linhas, quem sabe uma maneira de calcular o determinante da matriz A, uma maneira mais simples, não seja transformá-la em uma matriz triangular superior, e assim nós vamos apenas multiplicar os termos da diagonal principal. Então vamos fazer isso. Vamos calcular o determinante de A. Vou escrever aqui 1, 2, 2, 1; 1, 2, 4, 2; 2, 7, 5, 2; -1, 4, -6, 3. Agora nós vamos começar o processo de triangulação. Então a primeira linha eu vou manter, 1, 2, 2, 1, a segunda linha vou substituir pelo resultado da segunda linha menos a primeira linha, então 1 menos 1, zero, 2 menos 2, zero, 4 menos 2, 2, 2 menos 1, 1. A terceira linha eu vou substituir pelo resultado da terceira linha menos 2 vezes a primeira linha, então 2 menos 2 vezes 1, zero, 7 menos 2 vezes 2, 3, 5 menos 2 vezes 2, 1, 2 menos 2 vezes 1, zero. E a última linha vou substituir pelo resultado da soma da última linha com a primeira linha -1 mais 1, zero, 4 mais 2, 6, -6 mais 2, -4, 3 mais 1, 4. Bom, e agora estou vendo que eu tenho dois zeros aqui, então eu tenho um zero na minha diagonal principal. Eu vou fazer uma troca de linhas. Eu posso fazer uma troca de linhas? Posso, sim. Como que vai ficar, então? A primeira linha vai se manter, então vai ficar 1, 2, 2, 1, a última linha também vou manter, zero, 6, -4, 4 e vou trocar a segunda linha com a terceira linha. Então a terceira linha vai vir para cá e fica assim zero, 3, 1, zero e a segunda linha vai para o lugar da terceira, ficando zero, zero, 2, 1. Bom, eu posso trocar linhas de lugar? Posso, mas é importante lembrar o seguinte quando eu troco duas linhas de lugar, o sinal do determinante da matriz em relação ao sinal do determinante da matriz original também troca, então eu posso fazer essa troca desde que eu também troque o sinal do determinante. Isso foi uma coisa que nós vimos em um dos primeiros vídeos sobre esse assunto de manipulação de determinantes. E para transformar essa matriz em uma matriz triangular superior, nós vamos precisar zerar aqui também esse termo. Então vai ficar assim todo o restante igual, 1, 2, 2, 1; zero, 3, 1, zero; zero, zero, 2, 1 e a última linha eu vou substituir pelo resultado da seguinte operação última linha menos 2 vezes a segunda linha, zero menos 2 vezes zero, zero, 6 menos 2 vezes 3, zero, -4 menos 2 vezes 1, -6, 4 menos 2 vezes zero, 4. Eu não posso esquecer também do sinal, que era negativo, não é? Aqui vai se manter também. Agora já está quase terminando o processo de triangulação, mas eu ainda preciso zerar esse termo aqui. Então a primeira, segunda e terceira linhas vão ficar como estavam, então continua 1, 2, 2, 1; zero, 3, 1, zero; zero, zero, 2, 1. Estou calculando o determinante, não posso esquecer que o sinal aqui é negativo porque nós fizemos uma troca de linhas anteriormente e a última linha vou substituir pelo resultado da operação dela mais 3 vezes a penúltima linha. Então vai ficar assim zero mais 3 vezes zero, zero, zero mais 3 vezes zero, zero, -6 mais 3 vezes 2, zero, 4 mais 3 vezes 1, 7. E agora que eu tenho uma matriz triangular superior, o determinante dela vai ser o produto desses termos da diagonal principal. Então o determinante aqui vai ser, não posso esquecer do sinal negativo, menos o produto desses termos que estão na diagonal principal 1 vez 3 vezes 2 vezes 7. 1 vez 3, 3, 3 vezes 2, 6, 6 vezes 7, 42. -42, portanto, é o determinante dessa matriz aqui. Este é um método rápido e tende a ser computacionalmente mais eficiente utilizar esse processo de transformar a matriz em uma matriz triangular superior e depois calcular o determinante dessa matriz multiplicando apenas os termos da diagonal principal, que no nosso caso foi -42.
Matriks menjadi salah satu konsep penting dalam matematika, terutama dalam studi tentang aljabar. Terdapat berbagai jenis matriks, salah satunya adalah determinan matriks ordo 4×4. Dalam artikel ini, kita akan membahas apa itu determinan matriks ordo 4×4, jenis-jenisnya, mengapa determinan matriks ordo 4×4 penting, keuntungan menggunakan determinan matriks ordo 4×4, alasan mempelajari determinan matriks ordo 4×4, langkah-langkah menghitung determinan matriks ordo 4×4, dan tips penggunaan determinan matriks ordo 4×4. Apa itu Determinan Matriks Ordo 4×4?Jenis-Jenis Determinan Matriks Ordo 4×4Determinan KofaktorDeterminan SarrusMengapa Determinan Matriks Ordo 4×4 Penting?Keuntungan Menggunakan Determinan Matriks Ordo 4×4Alasan Mempelajari Determinan Matriks Ordo 4×4Langkah-Langkah Menghitung Determinan Matriks Ordo 4×4Tips Penggunaan Determinan Matriks Ordo 4×4Kesimpulan Apa itu Determinan Matriks Ordo 4×4? Sebelum membahas determinan matriks ordo 4×4, mari kita definisikan terlebih dahulu apa itu matriks. Matriks adalah suatu tabel berisi kumpulan bilangan atau variabel elemen matriks yang dikelompokkan menjadi beberapa baris dan kolom. Sedangkan determinan matriks ordo 4×4 adalah nilai skalar yang diperoleh dari hasil operasi matematika pada elemen-elemen matriks ordo 4×4. Jenis-Jenis Determinan Matriks Ordo 4×4 Terdapat dua jenis determinan matriks ordo 4×4, yaitu determinan kofaktor dan determinan Sarrus. Determinan Kofaktor Dalam determinan kofaktor, nilai determinan diperoleh dengan mengalikan setiap elemen matriks dengan kofaktornya, kemudian menjumlahkan hasil perkalian tersebut. Kofaktor sendiri merupakan nilai yang diperoleh dari hasil pengurangan determinan matriks minor matriks yang telah dikeluarkan baris dan kolomnya dengan tanda pangkat -1 yang sesuai dengan posisi elemen tersebut di dalam matriks. Determinan Sarrus Dalam determinan Sarrus, nilai determinan diperoleh dengan membentuk 3 pasang diagonal yang dimulai dari sudut kiri atas dan menjumlahkan hasil perkalian diagonal tersebut. Kemudian, hasil perkalian diagonal dari sudut kanan atas ke sudut kiri bawah dikurangi dari hasil perkalian diagonal dari sudut kiri atas ke sudut kanan bawah. Hasil akhirnya adalah nilai determinan matriks ordo 4×4. Mengapa Determinan Matriks Ordo 4×4 Penting? Determinan matriks ordo 4×4 memiliki banyak kegunaan dalam matematika dan disiplin ilmu lainnya. Salah satu contohnya adalah dalam penyelesaian persamaan linear dengan menggunakan matriks. Determinan matriks ordo 4×4 juga dapat digunakan untuk menentukan apakah suatu sistem persamaan memiliki solusi unik atau tidak. Selain itu, determinan matriks ordo 4×4 juga dapat digunakan dalam penghitungan luas bangun datar dan volume bangun ruang. Keuntungan Menggunakan Determinan Matriks Ordo 4×4 Adapun keuntungan menggunakan determinan matriks ordo 4×4 adalah sebagai berikut Mudah dan cepat dalam penghitungan nilai determinan. Dapat digunakan dalam menyelesaikan sistem persamaan linear. Dapat digunakan dalam penghitungan luas bangun datar dan volume bangun ruang. Mempermudah dalam mencari invers matriks. Alasan Mempelajari Determinan Matriks Ordo 4×4 Secara umum, alasan mempelajari determinan matriks ordo 4×4 adalah karena pentingnya konsep matriks dalam matematika dan aplikasinya dalam berbagai bidang ilmu, seperti fisika, kimia, ekonomi, dan berbagai disiplin ilmu lainnya. Selain itu, banyak pula tuntutan pekerjaan yang memerlukan pemahaman konsep matriks dan penggunaannya dalam pemecahan masalah. Langkah-Langkah Menghitung Determinan Matriks Ordo 4×4 Berikut adalah langkah-langkah menghitung determinan matriks ordo 4×4 dengan metode determinan kofaktor Hitung kofaktor untuk setiap elemen matriks. Hitung nilai determinan dengan menjumlahkan hasil perkalian setiap elemen matriks dengan kofaktornya. Berikut adalah langkah-langkah menghitung determinan matriks ordo 4×4 dengan metode determinan Sarrus Bentuk 3 pasang diagonal yang dimulai dari sudut kiri atas dan jumlahkan hasil perkalian diagonal tersebut. Kurangkan hasil perkalian diagonal dari sudut kanan atas ke sudut kiri bawah dengan hasil perkalian diagonal dari sudut kiri atas ke sudut kanan bawah. Hasil akhirnya adalah nilai determinan matriks ordo 4×4. Tips Penggunaan Determinan Matriks Ordo 4×4 Berikut adalah beberapa tips penggunaan determinan matriks ordo 4×4 Pahami terlebih dahulu konsep matriks dan penggunaan determinan sebelum menghitung determinan matriks ordo 4×4. Gunakan metode yang paling mudah dan nyaman bagi Anda dalam menghitung determinan matriks ordo 4×4. Periksa kembali hasil perhitungan untuk meminimalisir kesalahan. Kesimpulan Secara keseluruhan, determinan matriks ordo 4×4 adalah nilai skalar yang diperoleh dari hasil operasi matematika pada elemen-elemen matriks ordo 4×4. Ada dua jenis determinan matriks ordo 4×4, yaitu determinan kofaktor dan determinan Sarrus. Penggunaan determinan matriks ordo 4×4 sangat penting dalam matematika dan aplikasinya dalam berbagai bidang ilmu, seperti fisika, kimia, dan berbagai disiplin ilmu lainnya. Berbagai keuntungan dapat diperoleh dengan menggunakan determinan matriks ordo 4×4. Ada beberapa tips penggunaan determinan matriks ordo 4×4 yang perlu diperhatikan untuk menghasilkan perhitungan yang tepat dan akurat.Sementaraitu, pada halaman ini akan diberikan bagaimana cara cepat menghitung atau mencari determinan matriks 4x4. Caranya cukup mudah, setelah memasukkan entri matriks anda pada tabel yang tersedia, tidak butuh waktu 2 helaan nafas hasil determinan matriks 4x4 anda akan ditampilkan langsung. Segera saja, silahkan dicoba.